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We describe a method which allows the treatment of high orders of replica symmetry breaking �RSB� at low
temperatures as well as at T=0 directly, without a need for approximations or scaling assumptions. It yields the
low-temperature order function q�a ,T� in the full range 0�a�� and is complete in the sense that all observ-
ables can be calculated from it. The behavior of some observables and the finite RSB theory itself is analyzed
as the continuous RSB limit is approached. The validity and applicability of the traditional continuous formu-
lation is then scrutinized and a continuous formulation for treating RSB in the Parisi gauge directly at T=0 is
proposed.
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I. INTRODUCTION

The ordered phase of spin-glass models �1� has gained
much attention over the past three decades, but still there are
many open questions even in models which were designed to
possess simple “mean-field-type” solutions. Typical for the
difficulties encountered in the description of the ordered
phase is the appearance of an ultrametric structure �2� in the
mean-field theory of spin glasses, known as the Sherrington-
Kirkpatrick �SK� model �3�. The correct treatment of the SK
model involves a hierarchical scheme as introduced by Parisi
�4�, which only recently has been proven �5� to be exact in
the limit of an infinite number of hierarchical steps of replica
symmetry breaking �RSB�. The rather formal RSB scenario
has been connected to appealing pictures which reveal its
physical content: there is a static interpretation by means of
an ultrametric topology of the configuration space �2� and
even a dynamical interpretation �6�.

Though at temperatures right below the freezing transition
TC a small number � of RSB steps is not a bad approxima-
tion, at temperatures T�TC the convergence of the results
with respect to � becomes worse. Traditionally, the �=�
limit is formulated by a continuous theory in which the func-
tional free energy f�q̃�x�� is maximized with respect to the
Parisi order function q̃�x� , 0�x�1 �1,4�. This was later
expressed in a closed self-consistency form, involving a set
of numerically solvable partial differential equations �7,8�.
The treatment of Parisi RSB at finite temperatures is well
established, meanwhile. Near TC, even analytical solutions
are available. At zero temperature, however, the proper form
of the theory is still under discussion. The standard differen-
tial equations of the continuous formulation of Parisi RSB
and their initial conditions become singular in the zero-
temperature limit and the traditional formalism breaks
down.1

In the literature, one finds two main directions of ap-
proaching the zero-temperature limit of Parisi RSB. Pankov

proposed a beautifully simple scaling ansatz directly at infi-
nite RSB, which becomes exact in a certain limit at zero
temperature �10�. This limit, however, is far from being the
only important region of the full zero-temperature solution,
as we shall show later. On the other hand, our group has
developed an exact finite RSB approach, which involves
some advanced numerics when trying to reach orders of RSB
high enough to obtain a confident extrapolation �→�. How-
ever, our approach allows for a numerically exact description
of the full SK-model with all its difficulties and features at
T=0. The numerical results can be used to construct and test
analytical approximations or simpler alternative theories
which capture the essential physics while being generalizable
to more complex physical situations �11,12�.

The low-temperature formulation that is developed in the
present work directly identifies and analyzes the issues of
the infinite RSB limit at zero temperature and resolves them
by an appropriate rescaling of auxiliary quantities. It is based
on the idea of rescaled Parisi block size parameters �4,13�
ai=�mi with �=T−1. By this transformation, the nontrivial
structure of the zero-temperature order function of the SK
model can be resolved. In the traditional formalism, this
structure is concentrated and hidden at the point x=0, where
q̃�x� becomes singular. Both Pankov’s and our approach in-
vestigate this point, but while the scaling approach is incom-
plete in the sense, e.g., that it accounts only for the short-
time observables or that it cannot describe the situation at
finite external fields correctly, our approach yields the full
zero-temperature solution.

The paper is organized as follows. In Sec. II, we give a
short review of the issues encountered when performing the
zero-temperature limit and show the connections between the
two approaches mentioned above. In Sec. III, we derive the
zero-temperature limit of the SK-model at finite orders of
RSB. In Sec. IV, some results at low temperatures obtained
with the finite RSB formalism are presented. In Sec. V, we
discuss the �→� limit of our theory.

II. THE T=0 LIMIT OF q̃(x)

The Parisi order function q̃�x� , x� �0,1� which is
the central quantity of Parisi RSB at finite temperatures

1This statement is limited to Parisis RSB �4�. A more general RSB
scheme �9� allows for a nonsingular continuous formulation at
T=0 by exploiting the gauge invariance of the differential equa-
tions �8�.
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becomes a constant function at zero temperature
�limT→0q�x�=1, x�0� with a singularity at x=0. Since typi-
cal observables like, e.g., the internal energy u involve inte-
grals of the form ��0

1dx�1− q̃�x��2, one is tempted to absorb
the divergent factor � by a transformation x→a=�x. The
nontrivial zero-temperature structure which was concentrated
at x=0 in the Parisi order function and created the singularity
there is then “blown up” and resolved by the new order func-
tion q�a�. The transformation might remind the reader of
Parisi-Toulouse �PAT� scaling �16�. The idea here is differ-
ent, though, as we do not seek for a universal form of the
order function �which is known to be nonexistent� but for a
nonsingular zero-temperature theory.

The transformation x→a is not limited to T=0, of course,
so that we can formulate a general low-temperature theory
which allows a smooth transition from a treatment directly at
T=0 to finite temperatures. The objective of our formalism is
to find the function q�a ,T� with a� �0,�� from which one
can obtain q̃�x ,T�=q��x ,T� at finite temperatures. At ���,
q�a ,T� can be visualized as a step function with the number
of steps equal to � �see Fig. 1�.

In this notation, the Pankov-scaling approach is equiva-
lent to expanding q�a ,0��1−�a−2 near a=� and calculat-
ing the coefficient �. Knowledge of the a−2 term of this
expansion is sufficient for short-time observables like the
entropy or the nonequilibrium susceptibility. The full solu-
tion, however, must respect the functional dependence of
q�a ,0� at all a� �0,��. Knowledge of the function q�a ,0� in
its whole domain �0,�� is needed to calculate, e.g., the
ground state energy or the equilibrium susceptibility. Another
point is that the effect of a finite external field is reflected by
the small-a domain of q�a ,T� which is not resolved in �10�.
In Fig. 1 the difference between the two solutions at small a
is shown.

In order to obtain a well-defined zero-temperature limit,
we start with a formulation of the theory at finite orders of
RSB �����, where q�a ,T� is a function with � plateaus.
The height of the ith plateau is given by the number
qi� �0,1� and the step positions are given by ai� �0,��. If
one aims at a continuous theory for �→�, one must first
check that 	qi=qi−qi+1 and 	ai=ai−ai+1, i.e., the step
heights and widths approach zero. For T�0, those require-
ments are satisfied and are the basis of the well-known Parisi

differential equations �1,4,8�. At zero temperature and
�→�, we still find 	qi→0, which is not surprising since qi
is always restricted to the interval �0,1�. However, some step
widths 	ai grow indefinitely in this limit, so the assertion
	ai→0 which is needed to derive the Parisi differential equa-
tions fails at zero temperature. The nonvanishing 	ai corre-
spond to those ai that approach infinity for �→�, and so the
derivation of the continuous theory fails at a=�, while for
finite a a differential equation formulation is valid.

We want to stress the two different origins of the failure
of a continuous theory. It is well known that the Parisi dif-
ferential equation is formally invalid for x� x̄, where x̄ is the
so-called break point �1�. This is because of the absence of
block size parameters mi in the interval �x̄ ,1�, even in the
limit �→�. The largest mi becomes equal to x̄ in the con-
tinuous limit and all mi fill the interval �0, x̄� where they get
dense at finite temperatures. The validity domain of the dif-
ferential equation can be extended a posteriori to the whole
interval �0,1� by defining q̃�x�= q̃�x̄� and q̇̃�x�=0 for x� x̄.2

In the zero-temperature limit, a new aspect appears: in addi-
tion to the absence of any parameters mi beyond the break
point x̄, there is a domain where the parameters do not get
dense for �→�, i.e., the interval �0, x̄�. Instead, most of the
parameters are exactly zero if the theory at T=0 is expressed
in terms of mi and not in terms of ai.

As a result, at least the derivation of a differential equa-
tion in the regime �0, x̄� is questionable. Nevertheless, this
regime has been investigated by means of a continuous
theory �10�. We believe that the difference between the views
of our work and �10� is a different order of limits: in the
present work, we first take the zero-temperature limit and
then let the order of RSB ��� go to infinity, while in �10� the
zero-temperature limit is taken after the �→� limit.

In Sec. V of this paper, we show how the failure of a
continuous theory at a=� can be overcome by changing the
initial condition of the partial differential equation which is
valid for finite a only.

III. RECURSION TECHNIQUE FOR ARBITRARILY
HIGH RSB ORDERS �

We investigate the standard SK-model Hamiltonian �1,3�
of N Ising spins si= 
1 with external field H,

HSK = �
i�j

Jijsisj – H�
i

si. �1�

The quenched random coupling constants Jij are Gaussian-
distributed random variables with zero mean and variance
N−1.3 The model yields a freezing transition at TC=1. Since
the coupling constants’ degrees of freedom are quenched,
the free energy per spin of the system is given by
f =−T /NŠln�exp�−�HSK�	s‹J where �·	s refers to an average

2Luckily, this convention is also useful for writing certain sums of
parameters qi and mi as integrals over the domain �0,1�.

3The variance of the disorder distribution must scale as N−1 in
order to obtain a meaningful thermodynamic limit. This choice also
defines the energy and temperature scale of the system.
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FIG. 1. �Color online� True T=0 order function q�a ,0� at order-
200 RSB �black� and the step approximation at order-20 RSB. The
lower �red� curve shows the result of Pankov scaling, i.e., q�a ,0�
=1−�a−2.
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in the configuration space of Ising spins si= 
1 and �·	J
refers to an average with respect to the coupling constants
Jij. In order to bypass the average of the logarithm we avail
ourselves of the standard replica trick �17�. After transforma-
tion to a single-site model,4 we introduce Parisi RSB for the
replica coupling matrix, take the replica limit n→0 and the
thermodynamic limit N→�, and arrive at an expression for
the free energy per spin �see also �1��,

f = −
�

2
�1 − 2q1� +

�

4 �
i=1

�+1

qi
2�mi − mi−1� − f̃ �2�

with � the order of RSB and qi the values of the elements of

the Parisi blocks with size mi.
5 The nontrivial part f̃ of the

free energy is given by the ��+1�-fold nested integral

f̃ =
T

m�



�+1

G

ln�

�

GE

¯

2

GE 

1

G

�2cosh��h1��m1�
=

T

m�

 dh�+1


2��q�+1

e−�H − h�+1�2/2�q�+1


ln�
 dh�


2��q�

e−�h�+1 − h��2/2�q�


�¯�
 dh2


2��q2

e−�h3 − h2�2/2�q2


�
 dh1


2��q1

e−�h2 − h1�2/2�q1


�2cosh��h1��m1�r1�r2

¯�r�−1� . �3�

For more clarity in the notation we have defined two types of
Gaussian integral operators. The simple convolution opera-
tor, which convolves the function in its argument with a
Gaussian distribution, is defined as



i

G

f�hi� � 

−�

� dhi


2��qi

exp�−
�hi − hi+1�2

2�qi
� f�hi� . �4�

The widths of the Gaussian distributions are given in terms
of the order parameters qi as �qi=qi−qi+1 , �q�+1=q�+1.
The second operator involves an additional exponentiation of
the function the operator acts on, with a ratio ri−1 of block
size parameters mi,



i

GE

f�hi� � 

i

G

f�hi�ri−1, ri−1 =
mi

mi−1
. �5�

The last Gaussian convolution �indexed by �+1� in this
sequence must be centered at the external field by defining
h�+2=H. The Gaussian integral operators define “levels”
i=1, . . . ,�. At each integration level i, i.e., after the applica-

tion of �i
GE in Eq. �3�, one obtains a function of the single

field variable hi+1.
As explained above, it is convenient at low temperatures

to transform to new block size variables ai=�mi. Since the
block size ratios ri=

mi+1

mi
=

ai+1

ai
are not affected by the transfor-

mation m→a, the definitions of the Gaussian integral opera-
tors also remain invariant.

f̃ depends on the temperature only at the innermost inte-
grand of the sequence of integrations. This inner integrand,
however, has a well-defined zero-temperature limit in the a
formulation, namely,

�2cosh��h1��Ta1 →
T→0

ea1�h1�. �6�

The utility of our formulation for low temperatures lies in
the nonsingular limit of this inner integrand. It has been
shown before �13� that the first integral can be performed
analytically in the T→0 limit, but the integrals of the levels
i�1 cannot be solved exactly in general.

In an asymptotic regime, however, where h1→ 
�, all
integrals in �3� can be solved, even for finite temperatures.
For large h1 one finds for the inner integrand at arbitrary
temperatures

�2cosh��h1��Ta1 →
h1→
�

ea1�h1�. �7�

Further, it can be shown by completing the square in the
argument of the exponential function of the integrand that
the action of �i

GE on a function of the form exp�ai−1�hi�� can
be evaluated analytically in the limit �hi+1��1. One finds



i

GE

eai−1�hi� � exp�ai��hi+1� +
1

2
ai�qi�� . �8�

As a result, after the ith exponentiating Gaussian integral
operation in �3� has been performed, one finds, up to a mul-
tiplicative constant, the same exponential asymptotic h be-
havior as of the inner integrand �6�, but with ai�h� instead of
a1�h�.

The deviation of the integrals from their asymptotic forms
at small hi is incorporated in terms of auxiliary functions
exp Ci�h� which are defined by



i

GE

¯

1

G

�2 cosh��h1��Ta1 = exp�ai�1

2�
j=1

i

aj�qj + �hi+1�

+ exp Ci�hi+1��� . �9�

The functions exp Ci are well defined and free of singularities
at each level of integration and for all temperatures including
T=0. Furthermore, the domain in which exp Ci�h��0 is re-
stricted to small h �see Fig. 2�. The functions exp Ci�h� are
therefore the objects of our choice for the finite RSB numer-
ics. At the zeroth level of integration the “initial condition”

4Due to the infinite-range coupling between the spins, the effec-
tive dimension of the problem is � and so the mean-field theory is
exact.

5We use the convention qi�qi−1 and mi�mi−1.

METHOD FOR REPLICA SYMMETRY BREAKING AT AND… PHYSICAL REVIEW E 77, 061104 �2008�

061104-3



exp C0�h� = T ln�1 + exp�−
2�h�
T
�� �10�

has a smooth transition from finite temperatures to T=0, i.e.,
limT→0exp C0�h�=0. Furthermore, all functions exp Ci�h�
obey an h→−h symmetry, irrespective of temperature T or
external field H, and are continuous at h=0, though there is a
kink at h=0 with ��h exp Ci�h��h=0+ =−1, ∀ i. Therefore, it
is sufficient to restrict ourselves to h�0 and introduce a
boundary condition at h=0.

At finite �, there are simple relations between successive
auxiliary functions exp Ci�h� and exp Ci−1�h�,

exp Ci�h� =
1

ai
ln�


i

G

exp�ai��h�� − �h�

+ exp Ci−1�h�� −
1

2
ai�qi��� . �11�

The integral levels are thus interpreted as levels of a recur-
sive sequence of functions exp Ci�h� that is defined by an
initial condition �10� and a recursion relation �11� which de-
pends on the order parameters. This recursive formulation is
one of the central points of our finite-order RSB technique. It
allows a systematic calculation of free energy derivatives
with respect to the parameters qi and ai. These derivatives
are again defined recursively and can be computed with high
accuracy, as is required for high RSB orders.

The nontrivial part of the free energy can be expressed in
terms of an integral of exp C�,

f̃ = 

�+1

G

�exp C��h� + �h�� +
1

2�
k=1

�

ak�qk, �12�

so that the free energy per spin can be written as

f = −
T

4
�ne

2 +
1

4�
i=1

�

ai��qi − 1�2 − �qi+1 − 1�2�

− 

�+1

G

�exp C��h� + �h�� �13�

with the nonequilibrium susceptibility �ne=��1−q1�. For
the continuous RSB limit, one can fix the domain boundaries
of q�a ,T� by defining a�+1�0 and a0��. As a result, the
first line of �13� becomes proportional to an integral
�0

�da�1−q�a��2.
At finite �, the free energy must be maximized with re-

spect to �ai ,qi�. This is done for T=0 �finite T� by a root
search of the gradient of f in the 2�-(�2�+1�-)dimensional
parameter space.6

There are two main advantages of performing numerics in
terms of exp C. The first is that the nontrivial domain of this
function �i.e., where it is nonzero, see Fig. 2� is strongly
restricted to the region of small h and so the numerical effort
is reduced considerably. This is illustrated by Fig. 3 where
the � dependence of typical calculation times is shown. A
single calculation involves the computation of the free en-
ergy and all its derivatives. Since the number of derivatives
grows as 2�+1, the full calculation time grows more rapidly
than linear. The calculation time normalized to the number of
derivatives to calculate, however, grows nearly linearly with
� and therefore high orders of RSB may be obtained. The
second advantage is that exp C�h��O�1� and no loss of nu-
merical precision happens due to large numbers.

Figure 4 shows the functions exp Ci at some recursion
levels i. The initial condition is represented by the lowest
curve, which is exactly zero for T=0 and remains finite for
finite temperature, corresponding to the nonzero initial con-
dition given in Eq. �10�.

IV. RESULTS

In this section, we discuss some results of our extensive
numerical computations according to the scheme described

6At zero temperature, q1=1, because q1 is the Edwards-Anderson
order parameter.
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FIG. 2. Nontrivial domain of exp Ci�h� for all levels i of the
recursion sequence of a typical order-50 RSB calculation at T=0
and H=0 represented by the bars in the h direction. The nontrivial
domain is defined as the interval where exp Ci�h� is different from
zero, i.e., exp Ci�h��10−19.
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the calculation time t��1.6 of the free energy with all derivatives
and �b� the calculation time t0��1.1 of a single derivative.
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T=0 and �=50. The lower curves �red� correspond to small i and
the upper lines �blue� to large i. The inset shows a similar calcula-
tion at T=0.1 with �=30.
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in Sec. III. We have been able to perform calculations at
extremely high orders of RSB �up to 200 at T=0 and up to
53 at finite temperatures� with unprecedented accuracy, al-
lowing a deep insight into the subtleties that arise as � ap-
proaches its physical limit �=�.

In a previous publication we used order-42 RSB data to
extrapolate the zero-temperature free energy to �=� by fit-
ting f� to the function f�= f�=�+ const

��+�0�� .7 The extrapolation is
now confirmed and extended in accuracy according to order-
200 RSB high-precision numerics with the exp C formalism
to f�=�=−0.763 166 726 566 547, �=4. It is difficult to
estimate the error of the extrapolated free energy. The fluc-
tuations of the free energy of the finite-� calculations are
on an arbitrary small scale, due to the utilization of arbitrary-
precision arithmetic. Thus, the accuracy of f� depends
only on the fit procedure. To give the reader an idea of the
convergence level at order-200 RSB, let us state that
f200− f��10−11. With standard fit methods, an accuracy of
10−13 is obtained, which represents the minimum accuracy of
f�. With some technical tricks that are beyond the scope of
this paper, however, it seems that the accuracy might be up
to 10−15. In any case, this is by far the most precise ground
state energy ever obtained for the SK model and it provides
a good test for all coming formalisms which work directly at
�=� and T=0. In comparison with the literature, we find
that the value is consistent with the estimate of Parisi �14�
and also8 with a more recent estimate �7�.

At zero temperature the free energy f equals the internal
energy u. At finite temperatures, they are still closely related
by their Taylor expansions at T=0. We have checked numeri-
cally that the free energy can indeed be expanded in a Taylor
series with regular exponents at T=0,

f�T� = f0 − s0T + f2T2 + f3T3 + O�T4� , �14�

where s0=−�ne
2 /4 is the zero-temperature entropy, which

can also be expressed in terms of the nonequilibrium or
single-valley susceptibility �ne. The internal energy can be
expressed by the same coefficients

u�T� = f − T
df

dT
= f0 − f2T2 − 2f3T3 + O�T4�,

and also the temperature dependence of the entropy can be
written as s�T�=s0−2f2T−3f3T2+O�T4�. From our results
we find f2→0 and f3→−0.24, in agreement with the litera-
ture �7,10�.

The zero-temperature entropy is directly related to the
nonequilibrium susceptibility which can be written at finite-
order RSB as9

�ne = −
1

2�
i=1

�

ai�qi
2 − qi+1

2 � − f . �15�

We find that �ne� ��+�0�−� with �=1.666 664
5
10−6.
For an exponent, this numerical accuracy is sufficient to
claim �=5 /3. As a result, both, the nonequilibrium suscep-
tibility and the entropy vanish with irregular exponents 5/3
and 10/3, respectively, for �→� at zero temperature. The
implications of those irregular exponents will be discussed
elsewhere �15�.

As we have explained above, the natural formulation of
the order function at low temperatures is the formulation in
terms of a function q�a ,T� since it resolves the structure at
the singular point x=0 of the original Parisi order function
q̃�x ,T� at T=0. In order to better understand the critical prop-
erties of the zero-temperature order function, it is useful to
discuss the finite-order RSB step approximation to q�a ,T�. In
Fig. 5 the logarithm of the parameters ai are plotted as a
function of ln �. One can clearly see that for large ai the
spacing between successive a points does not vanish, while
for moderate ai, a continuum emerges. Also, at small ai, a
spacing appears on a ln a scale. This small ln a spacing,
however, does not imply a discreteness on the a scale, on
which the differential equations of a continuous theory are
defined. At finite temperatures, the discreteness at large a
disappears due to the restriction of ai to the interval �0,��,
while the small-a discreteness remains. A finite external field
would also destroy the small-a discreteness. The notion of
nonzero plateau widths on a logarithmic scale is directly re-
lated to the discrete spectra of the ri levels, which will be
discussed more thoroughly elsewhere �15�. At this point, we
want to stress the nonvanishing spacing between successive
ai parameters for small i.

At T�0, the identification of a break point x̄ is important.
One finds that

x̄ = lim
�→�

Ta1. �16�

From our computations at finite temperatures, we can extract
a confident value for x̄ at temperatures down to T=0.015.
Below this temperature, calculations at ��50 are needed.

7�0�1.27 is an offset which is used to improve the fit quality.
8The little deviation is due to a misprint in Ref. �7�, as brought to

our attention by one of the authors.
9Alternatively, it is also obtained by varying the free energy with

respect to q1. This has been checked and yields the same result.
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FIG. 5. ln ai as a function of ln � for �=1, . . . ,200 at T=0 �a�
and for �=1, . . . ,50 for T=0.03 �b�.
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We find x̄�T=0.015�=0.546 83
10−5. An extrapolation
of the finite-T break point to zero temperature yields
x̄�T=0�=0.546 86
5
10−5, consistent with the literature
values �7,10� but with accuracy extended by two orders of
magnitude. At zero temperature, x̄ is ill defined because
q̃�x ,0�=1, ∀ x�0. As a consequence, one does not find x̄
directly in the T=0 theory. In fact, there is a subtle noncom-
mutativity of the T→0 and �→� limits for quantities like
the break point �15�.

At finite � and T=0, all mi are zero. From scaling argu-
ments, however, one can see that there are finite mi even at
T=0 in the �=� limit. These are exactly the mi=Tai corre-
sponding to the discrete a points �see Fig. 5� and so the finite
mi are also discrete.10 In the continuous formulation of the
infinite-order RSB limit, an initial condition of the partial
differential equation is given at m1.11 There is, however, a
region of discrete mi where a continuous theory is invalid, so
at T=0 the initial condition of the continuous theory is dis-
connected from the validity domain of the differential equa-
tion. This is why the traditional theory fails for T=0.

Two other important and closely related parameters
are the T2 coefficient of the T expansion of the
Edwards-Anderson order parameter qEA�T�=1−�T2+O�T3�
and the a−2 coefficient of the 1 /a expansion of
q�a ,0�=1−�a−2+O�a−3�. At finite orders of RSB, there is
also a linear term in the T expansion of qEA with the coeffi-
cient equal to �ne, but this coefficient vanishes for �→�.
From our numerical data, we can extract for the quadratic
temperature coefficient of the Edwards-Anderson order pa-
rameter �=1.594 10
0.000 01, exceeding the precision
given in �10� by two orders of magnitude. The coefficient of
the leading term in the 1 /a expansion of q�a� is estimated as
�=0.4108
0.0001, consistent with the high-precision calcu-
lation in �10�.

In the following paragraph, we analyze our results from
the viewpoint of PAT scaling �16�. In the original formula-
tion, PAT scaling has been used to evaluate an �approxi-
mately� universal scaling function q̃�x ,T�� f�x /T� for x� x̄.
It is known that this scaling does not hold exactly. If it held
exactly, then f�x /T�=q�x /T ,0� at all temperatures and
knowledge of the zero-temperature order function was suffi-
cient to obtain the solution at all temperatures. In Fig. 6 we
compare q�a ,0� to the result of the PAT hypothesis, which
was obtained according to the description in �16�.

In order to discuss the correction to PAT scaling near
T=0, we rewrite the true order function q�a ,T� as

q�a,T� = �q�a,0� + q̃�a,T� for a � ā ,

q�ā,0� + q̃�ā,T� for a � ā ,
� �17�

with ā=�x̄, and q̃�a ,T� is the correction to PAT scaling near
T=0. From the identity 1=�0

�da�1−q�a ,T�� one can derive

the correction to the PAT-scaling break point at zero tempera-
ture,

x̄�T = 0� =
1

2
−

1

2�
lim
T→0



0

ā

da
d

dT
q̃�a,T� �18�

with � the quadratic temperature coefficient of the Edwards-
Anderson �EA� order parameter qEA�T��1−�T2. If we as-
sume that q̃�a ,T� can be expanded in a Taylor series near
�a ,T�= �� ,0�, i.e.,

q̃�a,T� = �
i

Tiq̃i�a� for T � 1 �19�

and

q̃i�a� = �
j

bi
ja−j for a � 1, �20�

one can derive relations between the lowest coefficients of
the q̃�a ,T� expansion, the quadratic temperature coefficient
� of the EA order parameter, the break point, and the a−2

coefficient � of the expansion of q�a ,0� at a=�:

b1
0 = b1

1 = 0, �21�

� =
�

x̄2 − b2
0, �22�



0

�

da q̃1�a� =
�

x̄2 �1 − 2x̄� − b2
0. �23�

The first relation states that q̃1�a� must approach zero faster
than a−1 as a→�. The parameters � ,� , x̄ are very well
known from the literature and have been obtained from our
numerical data, too. From the above relation, one can thus
extract b2

0=−0.220 35
0.000 12 and write the correction to
PAT scaling near �a ,T�= �� ,0� as

q�a,T� = q�a,0� − 0.22T2 + O�T,a−1�3. �24�

Relation �23� can be used as a test for q̃1�a� extracted from
numerics.

V. �-ORDER RSB LIMIT

As �→�, the number of parameters �qi ,ai� goes to infin-
ity as well and a smooth order function q�a ,T� defined on the

10This can also be seen from the discrete spectra, because of the
definition of ri−1=ai /ai−1=mi /mi−1.

11Sometimes in the literature one finds the initial condition at
x=1, which is equivalent due to the triviality of the differential
equations beyond the break point.
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FIG. 6. �Color online� Comparison of the universal scaling func-
tion obtained by the PAT hypothesis �red, solid� and the zero-
temperature order-200 RSB order function q�a ,0� �black, dashed�.
The inset shows the difference of the two curves.
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interval �0,�� results for T�0. In this limit, the set of func-
tions exp Ci merges to one continuous function of two vari-
ables a and h defined as

exp C�ai,h� = lim
�→�

exp Ci�h� �25�

and the free energy for H=0 can be written as

f = −
1

4



0

�

da�q�a� − 1�2 − exp C�a = 0,h = 0� . �26�

exp C�a ,h� is the solution of the partial differential equation

�aexp C = −
q̇�a�

2
��h

2exp C + 2a�hexp C + a��hexp C�2�

�27�

with boundary and initial conditions

��hexp C�a,h��h=0+ = − 1, exp C�a,�� = 0,

exp C��,h� = T ln�1 + exp�− 2�h�� �28�

for h�0.
At finite temperatures, where the spacings between suc-

cessive ai and qi approach zero as �→�, exp C is well be-
haved, and the differential equation can be solved numeri-
cally. In this case Eqs. �27� and �28� are merely a
reformulation of the Parisi theory �1,4�, convenient at low
temperatures. At exactly zero temperature, however, two
problems arise which force us again to reformulate. First the
discreteness in the large-a regime of q�a� formally invali-
dates the differential equation at a=�, where the initial con-
dition is given. Further, the second derivative of the initial
condition has a divergence at h=0 as T→0.

The second issue can be resolved by a further re-
scaling y= �a+1�h and introduction of the function
g�a ,y�= �a+1�exp C�a ,y / �a+1��. The initial condition at �
for exp C translates to g�� ,y�=ln�1+e−2y�=g0�y�. Figure
7�a� shows the a and y dependence of g�a ,y� �for visualiza-
tion purposes, the a axis has been mapped to the interval
�0,1� by the introduction of the variable �=a / �1+a��. Obvi-
ously, for finite a �i.e., ��1�, g�a ,y� varies smoothly as a
function of a and the description in terms of a partial differ-
ential equation is valid. In the large-a limit, however, a sin-
gularity appears. To understand the origin of this singularity
and the method to handle it, we go back again to the finite-
order RSB formulation. The investigation of the order-200

RSB calculations shows that at large a the difference be-
tween g�ai ,y� and g�ai+1 ,y� does not vanish with �→� as it
does for moderate a�a1 �see Fig. 7�b��.12 This means that
the recursion relation �11� does not pass over to a differential
equation at a=�. Instead, one can see that the recursion
drives the function to a limiting function g��y� from which
the continuous part of g�a ,y� starts. In Fig. 7�b� the first ten
functions gi�y� obtained by the recursion relation within a
�=200 calculation are shown together with g0�y� and the
limiting function of the recursion g��y�. This limiting func-
tion has been obtained by numerically solving an ordinary
differential equation, as explained below.

It is important at T=0 to distinguish different a=�
“points” by considering the corresponding position on an
x=aT scale. The initial condition of the function g�a ,y�, for
instance, is given at a=� and x= x̄—this is the function
g0�y�. The limiting function of the recursion sequence g��y�
is also given at a=�, but on an x scale the position is x=0.
Thus, the recursion in Fig. 7�b� approaches the point a=�,
x=0 from above.

To complete our discussion, we now approach the point
a=�, x=0 from below. In the finite-a regime, the behavior of
g�a ,y� is governed by a partial differential equation, instead
of a recursion relation �the overdot refers to a derivative with
respect to a, while the prime means a y differentiation�:

ġ = −
q̇

2
�a + 1���a + 1�g� + 2ag� + a�g��2� +

g − yg�

a + 1
.

�29�

In order to investigate this equation at zero temperature in
the limit a→�, where the initial condition is given, we ex-
pand the order function q�a ,0�=1−�a−2 and Eq. �29� itself
near a=�. To first order in a−1, we find ġ= 1

aF�g� with

F�g� = g − yg� − ��g� + 2g� + �g��2� . �30�

Obviously, an initial condition g�� ,y� of �29� with
F�g�� ,y���0 would lead to a logarithmic singularity of
g�a ,y� at a=�. The only nonsingular initial condition is
therefore the solution to the ordinary differential equation
F�g̃�y��=0. Indeed, the solution g̃�y� of this differential
equation seems to be the limiting function g��y� of the re-
cursion at a=� starting from g0�y�, as discussed above. In

12a1 is the largest a parameter in the finite RSB formulation.
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FIG. 7. �Color online� �a� Function g�� ,y�
with �=a / �1+a� at T=0 from an order-200 RSB
calculation. �b� Initial condition g0�y� �top black
line� at x=1, a=� and the first ten integrations
�red to blue�. The bottom black line shows the
initial condition g��y� at x=0, a=�.
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Fig. 7�b�, the function g��y� is the numerical solution of
F�g��=0. In some sense, the partial differential equation
governing the function g�a ,y� yields its own initial
condition—it is the only initial condition that makes sense.

To further illustrate and confirm this line of reasoning and
to better understand the transition �→�, we shall restrict our
discussion of g�a ,y� to y=0 as representative for the a de-
pendence of g. In Fig. 8 we plot g�ai ,0� at T=0 for ���
varying from 10 to 200. Again, one can see the discreteness
at a=�. For demonstration purposes, a calculation of g�� ,y�
directly at order-� RSB is plotted in Fig. 8. It has been
calculated from Eq. �29�. To obtain this solution at large
a, Eq. �29� has been expanded up to order a−2 at a=�.
The solution of this expansion around a=� taken at a=8
���0.89� was then used as an initial condition for the full
partial differential equation �29� at a=8. By thoroughly look-
ing at the line, one can see a small error near this junction
point. With more effort, such as higher-order expansions at

a=� or advanced numerical methods for partial differential
equations �e.g., pseudospectral methods �7��, the quality of
the full continuous RSB solution at zero temperature can be
greatly improved, but this is beyond the scope of this work.

VI. CONCLUSION

We have developed an RSB technique which allows cal-
culations at extremely high orders of Parisi RSB near and at
T=0. With the help of this technique, numerical calculations
have been performed for up to 200 orders of RSB at T=0
and for up to 53 orders of RSB for finite temperatures. Sev-
eral quantities have been extracted from these numerical
calculations. In particular, their dependence on the order of
RSB has been investigated. Further, we obtained, to our
best knowledge, the most precise numerical value for the
ground state energy of the SK model. The connection to PAT
scaling has been analyzed and the first correction to the PAT-
scaling assumption q�x ,T�= f�x /T� near zero temperature
and a=x /T=� has been discussed.

Furthermore, we have proposed an ansatz for a full treat-
ment of the zero-temperature limit of Parisi RSB in the SK
model directly at infinite order of RSB—in analogy to the
continuous RSB formalism at finite temperatures �4�. It has
been shown that the original initial condition of the partial
differential equation �4�. must be replaced by a function
which is defined as the solution of an ordinary differential
equation.
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